Using String-Kernels for Learning Semantic Parsers
نویسندگان
چکیده
We present a new approach for mapping natural language sentences to their formal meaning representations using stringkernel-based classifiers. Our system learns these classifiers for every production in the formal language grammar. Meaning representations for novel natural language sentences are obtained by finding the most probable semantic parse using these string classifiers. Our experiments on two realworld data sets show that this approach compares favorably to other existing systems and is particularly robust to noise.
منابع مشابه
A Kernel-based Approach to Learning Semantic Parsers
Semantic parsing involves deep semantic analysis that maps natural language sentences to their formal executable meaning representations. This is a challenging problem and is critical for developing user-friendly natural language interfaces to computing systems. Most of the research in natural language understanding, however, has mainly focused on shallow semantic analysis like case-role analys...
متن کاملApplication of Semantic Kernels to Literature-Based Gene Function Annotation
In recent years, a number of machine learning approaches to literature-based gene function annotation have been proposed. However, due to issues such as lack of labeled data, class imbalance and computational cost, they have usually been unable to surpass simpler approaches based on string-matching. In this paper, we investigate the use of semantic kernels as a way to address the task’s inheren...
متن کاملCombining LAPIS and WordNet for Learning of LR Parsers with Optimal Semantic Constraints
There is a history of research focussed on learning of shift-reduce parsers from syntactically annotated corpora by the means of machine learning techniques based on logic. The presence of lexical semantic tags in the treebank has proved useful for the learning of semantic constraints limiting the amount of nondeterminism in the parsers. The grain of the semantic tags used is of direct importan...
متن کاملLearning Semantic Parsers for Natural Language Understanding
For building question answering systems and natural language interfaces, semantic parsing has emerged as an important and powerful paradigm. Semantic parsers map natural language into logical forms, the classic representation for many important linguistic phenomena. The modern twist is that we are interested in learning semantic parsers from data, which introduces a new layer of statistical and...
متن کاملKernel-based machine learning for fast text mining in R
Recent advances in the field of kernel-based machine learning methods allow fast processing of text using string kernels utilizing suffix arrays. kernlab provides both kernel methods’ infrastructure and a large collection of already implemented algorithms and includes an implementation of suffix-array-based string kernels. Along with the use of the text mining infrastructure provided by tm thes...
متن کامل